tamas

here another project. it's a box for replacing some old midi hardware. it can read 16 analog sensors, 16 digital sensors and control 16 leds via pwm. basically it is just a teensy plus a pwm breakout board from sparkfun. to easily access all the pins on the teensy, i also used the excellent Teensy 3.2 Breakout Board R3 by Daniel Gilbert.

attached are schematics, teensy code, and supercollider and maxmsp code for dealing with the serial communication.

tamas00

tamas01

update 161011: fixed a silly but severe error in the max patch

AttachmentSize
Binary Data TamasSerial.sc1.84 KB
Image icon tamas_teensy_schematics.png184.1 KB
Binary Data tamas_teensy.ino2.07 KB
Binary Data tamas_test.maxpat86.04 KB

mp3 speakers

for an upcoming installation we need a few speakers hanging on the walls playing back sound files in a loop. i found the dfplayer mini to work well. it's a small and cheap board that can play soundfiles from a sd-card and it has a built-in 3W amplifier. with a decent 5v batterybank (here 4400mAh) it can run for ~4 days continuously.

mp3speakers

example class

here is a very basic supercollider class i wrote as an example of why and how to write classes.

//save this as MySequencerTrack.sc in your extensions folder and recompile
MySequencerTrack {
        var <steps;
        var <>array;
        *new {|steps= 16|
                ^super.newCopyArgs(steps).init;
        }
        init {
                array= Array.fill(4, {Array.fill(steps, 0)});  //4 here because of the four params: amp, freq, mod, pan
        }

        //array get/set
        amps {^array[0]}
        amps_ {|arr| array[0]= arr}
        freqs {^array[1]}
        freqs_ {|arr| array[1]= arr}
        mods {^array[2]}
        mods_ {|arr| array[2]= arr}
        pans {^array[3]}
        pans_ {|arr| array[3]= arr}

        //single value get/set
        amp {|index| ^array[0][index]}
        amp_ {|index, val| array[0].put(index, val)}
        freq {|index| ^array[1][index]}
        freq_ {|index, val| array[1].put(index, val)}
        mod {|index| ^array[2][index]}
        mod_ {|index, val| array[2].put(index, val)}
        pan {|index| ^array[3][index]}
        pan_ {|index, val| array[3].put(index, val)}
}

and here is some test code for it...

a= MySequencerTrack.new;
a.freqs
a.steps
a.amps= {1.0.rand}!a.steps
a.amps
a.amp(10)  //first one
//and then the same for a.freqs etc

(
s.waitForBoot{
        a.amps= {[0.5, 0.25, 0, 0, 0].choose}!a.steps;
        a.freqs= {[60, 66, 70].choose.midicps}!a.steps;
        a.mods= {1.0.linrand}!a.steps;
        a.pans= {1.0.rand2}!a.steps;
        b= {|freq= 400, amp= 0, mod= 0, pan= 0| Pan2.ar(SinOsc.ar(freq, SinOsc.ar*mod, amp), pan)}.play;
        s.sync;
        r= Routine.run({
                inf.do{
                        a.steps.do{|i|
                                b.set(\freq, a.freq(i), \amp, a.amp(i), \mod, a.mod(i), \pan, a.pan(i));
                                0.125.wait;
                        };
                };
        });
};
)

//and while it is running...  replace freqs
a.freqs= {[52, 66, 70, 80].choose.midicps}!a.steps;
a.amp_(0, 1)  //set first amp to 1.0
a.amps
a.amps= a.amps.rotate(-1)  //rotate amps left
a.freqs= a.freqs.rotate(2) //rotate freqs right
a.freqs= a.freqs+10  //transpose up
a.freqs= a.freqs.scramble //reorder

r.stop
b.free

//now the important thing and why classes are good...
//here we make 10 tracks all 32 values in length...
~mysequencer= {MySequencerTrack(32)}!10;
~mysequencer[0].amps  //amplitudes for first track
~mysequencer[0].amps= {1.0.rand}!a.steps
~mysequencer[0].amps
~mysequencer[0].amp(0)  //first one

(
s.waitForBoot{
10.do{|i|
        var steps= ~mysequencer[i].steps;
        ~mysequencer[i].amps= {[0.5, 0.25, 0, 0, 0, 0, 0, 0].choose}!steps;
        ~mysequencer[i].freqs= {[60, 66, 70, 90].choose.midicps}!steps;
        ~mysequencer[i].mods= {1.0.linrand}!steps;
        ~mysequencer[i].pans= {1.0.rand2}!steps;
};
~synths= {
        {|freq= 400, amp= 0, mod= 0, pan= 0| Pan2.ar(SinOsc.ar(freq, SinOsc.ar*mod, amp/2), pan)}.play;
}!10;
        s.sync;
        r= ~mysequencer.collect{|trk, i|
                var syn= ~synths[i];
                Routine.run({
                        inf.do{|j|
                                var x= j%trk.steps;
                                syn.set(\freq, trk.freq(x), \amp, trk.amp(x), \mod, trk.mod(x), \pan, trk.pan(x));
                                0.125.wait;
                        };
                });
        };
};
)

//while the above is running
~mysequencer[0..7].do{|trk| trk.amps= 0!32}  //mute all tracks except 8&9
~mysequencer[8..9].do{|trk| trk.mods= {4.0.linrand}!32}  //more fmod on tracks 8&9
~mysequencer[0..1].do{|trk, i| trk.freqs= {i+1*150}!32; trk.mods= {0}!32; trk.amps= {|j| [0, 1].wrapAt(i+j)}!32} //renew and add tracks 0&1
~mysequencer[8..9].do{|trk| trk.amps= {0.75.linrand*[1, 0].choose}!32}  //new amps for track 8&9
~mysequencer[8..9].do{|trk| trk.freqs= {8.linrand+1*150}!32}  //new freqs for track 8&9
~mysequencer[6].amps= {0.4}!9++({0}!23); ~mysequencer[6].freqs= {|i| 2**i*50+50}!32; //add arpeggio on track 6

~mysequencer.do{|x| x.freqs= x.freqs*1.1} //transpose all frequencies
~mysequencer.do{|x| x.amps= x.amps.rotate(-3)} //rotate all amps

r.do{|x| x.stop}
~synths.do{|x| x.free}

esp8266 opensound control teensy

today i ported my opensound control esp8266 example for arduino to run on a teensy 3.1.

the version below is a bit simpler but still works the same. it is just to show how to send and receive osc messages directly in sc or max.

teensy code:

//f0 150705 - modified for teensy3 160430
//sending and receiving udp osc with an esp8266
//for teensy + esp8266 with firmare 0.9.5.2
#define WLAN_SSID  "ssid"
#define WLAN_PASS  "pass"
#define WLAN_ADDR  "192.168.1.3" //laptop running sc EDIT
#define ADDR "/tap" //incoming osc addy
#define PORT  1112  //incoming osc port
uint8_t buf[16];
char indata[12];
char inbuffer[256];
char OKrn[] = "OK\r\n";
byte wait_for_esp_response(int timeout, char* term = OKrn) {
  unsigned long t = millis();
  bool found = false;
  int i = 0;
  int len = strlen(term);
  while (millis() < t + timeout) {
    if (Serial1.available()) {
      inbuffer[i++] = Serial1.read();
      if (i >= len) {
        if (strncmp(inbuffer + i - len, term, len) == 0) {
          found = true;
          break;
        }
      }
    }
  }
  inbuffer[i] = 0;
  return found;
}
void setup() {
  //--osc message
  buf[0] = 47;   // /
  buf[1] = 115;  // s
  buf[2] = 116;  // t
  buf[3] = 105;  // i
  buf[4] = 0;
  buf[5] = 0;
  buf[6] = 0;
  buf[7] = 0;
  buf[8] = 44;   // ,
  buf[9] = 105;  // i
  buf[10] = 0;
  buf[11] = 0;
  buf[12] = 4;   // a
  buf[13] = 3;   // b
  buf[14] = 2;   // c
  buf[15] = 0;   // d
  pinMode(23, OUTPUT);
  Serial.begin(115200);   //usb serial for feedback
  delay(400);
  Serial1.begin(115200);  //teensy hardware pins 0 and 1
  Serial.println("starting");
  Serial.print("hard reset...");
  pinMode(4, OUTPUT);
  delay(10);
  pinMode(4, INPUT);
  Serial.print("ready...");
  boolean resp = wait_for_esp_response(1000, "ready\r\n");
  Serial.println(resp);
  Serial.print("mode1...");
  Serial1.println("AT+CWMODE=1");
  resp = wait_for_esp_response(1000);
  Serial.println(resp);
  Serial.print("connecting...");
  do {
    Serial1.print("AT+CWJAP=\"");
    Serial1.print(WLAN_SSID);
    Serial1.print("\",\"");
    Serial1.print(WLAN_PASS);
    Serial1.println("\"");
    resp = wait_for_esp_response(3000);
    Serial.print(resp);
  } while (!resp);
  Serial.print("\nmux1...");
  Serial1.println("AT+CIPMUX=1");
  resp = wait_for_esp_response(1000);
  Serial.println(resp);
  Serial.print("udp...");
  Serial1.print("AT+CIPSTART=4,\"UDP\",\"");
  Serial1.print(WLAN_ADDR);
  Serial1.print("\",57120,");
  Serial1.print(PORT);
  Serial1.println(",0");
  resp = wait_for_esp_response(1000);
  Serial.println(resp);
  Serial.println("setup done");
}
void loop() {
  if (wait_for_esp_response(1000, "\r\n+IPD,4,16:")) {
    if (wait_for_esp_response(1000, ADDR)) {
      Serial1.readBytes(indata, 12);
      if (wait_for_esp_response(1000)) {
        buf[12] = indata[8] + 1; //add one to incomming values
        buf[13] = indata[9] + 1;
        buf[14] = indata[10] + 1;
        buf[15] = indata[11] + 1;
        Serial.println(int(indata[8]));
        Serial.println(int(indata[9]));
        Serial.println(int(indata[10]));
        Serial.println(int(indata[11]));
        Serial1.println("AT+CIPSEND=4,16");
        if (wait_for_esp_response(1000, "> ")) {
          Serial1.write(buf, sizeof(buf));
          if (wait_for_esp_response(1000)) {
            Serial.println("reply sent!");
          }
        }
      }
    }
  }
}

supercollider code:

(
//--call&response
var send= 0, last= Main.elapsedTime;
OSCdef(\sti, {|msg, time, addr|
        //should receive the values you sent +1
        ([msg[1]>>24, (msg[1]>>16)&255, (msg[1]>>8)&255, msg[1]&255]).post;
        (" % sec since last: %, % sec since sent").format(addr, time-last, time-send).postln;
        last= time;
}, \sti);
n= NetAddr("192.168.1.4", 1112); //esp8266 ip address EDIT
f= {|id, on, hi, lo| (id&255<<24)|(on&255<<16)|(hi&255<<8)|(lo&255)};
r= Routine.run({
        inf.do{|i|
                n.sendMsg(\tap, f.value(4, 3, i.asInteger%256, 1));
                send= Main.elapsedTime;
                0.5.wait;
        };
});
)
AttachmentSize
Package icon maxmsp example patch1.56 KB

greenpeace

here's a handy class for supercollider. it's an audio clipping detector loosely based on Batuhan Bozkurt's StageLimiter.

to install it download and extract the zip file into your supercollider extensions folder. then recompile and type...

GreenPeace.activate

now as soon as you play sound that's clipping (i.e. exceeds -1.0 or 1.0), the class will warn you.

to turn it off type...

GreenPeace.deactivate
AttachmentSize
Package icon GreenPeace.zip3.67 KB

joule thieves

to make something useful out of 'dead' batteries i've been building joule thief circuits. these circuits are very easy, cheap and fun to build plus it gives me a little bit less bad conscious when going to the recycling bin with the batteries. watch https://www.youtube.com/watch?v=K53beWYdIpc to learn more.

below are pictures of one variant. it has a small 3mm green led (salvaged from broken printer), a hand wound coil, a resistor and a transistor.

joulethief 0

joulethief 1

the batteries here came with my first ever (analogue) multimeter. they are 32 years old!. see the date code: 84-04. they still can drive the little led. amazing. i think running this little green led is a good way to use the last energy stored in these beautiful and truly long life batteries.

joulethief 2

spiral

just some hypnotic graphics...

the javascript code above is this...

<div style="background-color:black;">
<canvas id="can" width="800" height="600"></canvas>
<script>
var width, height;
var ctx, frameCount= 0;
(function() {
    var can= document.getElementById('can');
    ctx= can.getContext('2d');
    width= can.width;
    height= can.height;
    ctx.fillStyle= '#FFF';
    window.requestAnimationFrame(draw);
})();
function draw() {
    ctx.clearRect(0, 0, width, height);
    ctx.save();
    ctx.translate(width*0.5, height*0.5);
    ctx.beginPath();
    var theta= Math.sin(frameCount*0.001)*Math.PI*2*4;
    for(var y= 0; y<height; y++) {
        for(var i= 0; i<10; i++) {
            ctx.rotate(theta*0.001);
            ctx.fillRect((Math.sin(y*0.1+theta+(i*2))*100), y, 2, 2);
        }
    }
    ctx.restore();
    frameCount= frameCount+1;
    window.requestAnimationFrame(draw);
}
</script>
</div>

originally this was a quick sketch made in processing...

//spiral.pde - processing
void setup() {
  size(800, 600);
  noStroke();
}
void draw() {
  background(0);
  translate(width*0.5, height*0.5);
  float theta= sin(frameCount*0.001)*TWO_PI*4;
  for(int y= 0; y<height; y++) {
    for(int i= 0; i<10; i++) {
      rotate(theta*0.001);
      rect((sin(y*0.1+theta+(i*2))*100), y, 2, 2);
    }
  }
}

and then ported to supercollider...

//spiral.scd - supercollider
(
var width= 800, height= 600;
var win= Window("spiral", Rect(100, 100, width, height), false);
var usr= UserView(win, Rect(0, 0, width, height));
usr.background= Color.black;
usr.animate= true;
usr.drawFunc= {
        var theta= sin(usr.frame*0.001)*2pi*4;
        Pen.fillColor= Color.white;
        Pen.translate(width*0.5, height*0.5);
        height.do{|y|
                10.do{|i|
                        Pen.rotate(theta*0.001);
                        Pen.fillRect(Rect(sin(y*0.1+theta+(i*2))*100, y, 2, 2));
                };
        };
};
CmdPeriod.doOnce({win.close});
win.front;
)

Pages

Subscribe to f0blog RSS